Moment of Impact
Directions
Brace myself for the impact!
Comparing variances using the F-test.
1. Load data
## ï..Pile_Number Pile_Length_Estimated Pile_Length_Actual
## 1 1 10.58 18.58
## 2 2 10.58 18.58
## 3 3 10.58 18.58
## 4 4 10.58 18.58
## 5 5 10.58 28.58
## 6 6 10.58 26.58
Change the column names.
## Number Estimated_Length Actual_Length
## 1 1 10.58 18.58
## 2 2 10.58 18.58
## 3 3 10.58 18.58
## 4 4 10.58 18.58
## 5 5 10.58 28.58
## 6 6 10.58 26.58
2. F test
2-sided test.
H0: Variance of Pile_Length_Estimated = Variance of Pile_Length_Actual.
H1: Variance of Pile_Length_Estimated <> Variance of Pile_Length_Actual.
##
## F test to compare two variances
##
## data: pile$Estimated_Length and pile$Actual_Length
## F = 0.95805, num df = 310, denom df = 310, p-value = 0.7062
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7665136 1.1974461
## sample estimates:
## ratio of variances
## 0.9580495
1-sided test upper.
H0: Variance of Pile_Length_Estimated <= Variance of Pile_Length_Actual.
H1: Variance of Pile_Length_Estimated > Variance of Pile_Length_Actual.
##
## F test to compare two variances
##
## data: pile$Estimated_Length and pile$Actual_Length
## F = 0.95805, num df = 310, denom df = 310, p-value = 0.6469
## alternative hypothesis: true ratio of variances is greater than 1
## 95 percent confidence interval:
## 0.7945451 Inf
## sample estimates:
## ratio of variances
## 0.9580495
1-sided test lower
H0: Variance of Pile_Length_Estimated >= Variance of Pile_Length_Actual.
H1: Variance of Pile_Length_Estimated < Variance of Pile_Length_Actual.
##
## F test to compare two variances
##
## data: pile$Estimated_Length and pile$Actual_Length
## F = 0.95805, num df = 310, denom df = 310, p-value = 0.3531
## alternative hypothesis: true ratio of variances is less than 1
## 95 percent confidence interval:
## 0.0000 1.1552
## sample estimates:
## ratio of variances
## 0.9580495
3. Alternate data format
Wide format.
## Number Estimated_Length Actual_Length
## 1 1 10.58 18.58
## 2 2 10.58 18.58
## 3 3 10.58 18.58
## 4 4 10.58 18.58
## 5 5 10.58 28.58
## 6 6 10.58 26.58
Convert from wide to long.
library(reshape2)
pile_long <- melt(pile,
id.vars = c("Number"),
variable.name = "Length_Type",
value.name = "Length")
head(pile_long, 15)
## Number Length_Type Length
## 1 1 Estimated_Length 10.58
## 2 2 Estimated_Length 10.58
## 3 3 Estimated_Length 10.58
## 4 4 Estimated_Length 10.58
## 5 5 Estimated_Length 10.58
## 6 6 Estimated_Length 10.58
## 7 7 Estimated_Length 10.58
## 8 8 Estimated_Length 10.58
## 9 9 Estimated_Length 10.58
## 10 10 Estimated_Length 10.58
## 11 11 Estimated_Length 10.58
## 12 12 Estimated_Length 5.83
## 13 13 Estimated_Length 5.83
## 14 14 Estimated_Length 5.83
## 15 15 Estimated_Length 5.83
2-sided test.
H0: Variance of Pile_Length_Estimated = Variance of Pile_Length_Actual.
H1: Variance of Pile_Length_Estimated <> Variance of Pile_Length_Actual.
##
## F test to compare two variances
##
## data: pile_long$Length by pile_long$Length_Type
## F = 0.95805, num df = 310, denom df = 310, p-value = 0.7062
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.7665136 1.1974461
## sample estimates:
## ratio of variances
## 0.9580495
1-sided test upper.
H0: Variance of Pile_Length_Estimated <= Variance of Pile_Length_Actual.
H1: Variance of Pile_Length_Estimated > Variance of Pile_Length_Actual.
##
## F test to compare two variances
##
## data: pile_long$Length by pile_long$Length_Type
## F = 0.95805, num df = 310, denom df = 310, p-value = 0.6469
## alternative hypothesis: true ratio of variances is greater than 1
## 95 percent confidence interval:
## 0.7945451 Inf
## sample estimates:
## ratio of variances
## 0.9580495
1-sided test lower
H0: Variance of Pile_Length_Estimated >= Variance of Pile_Length_Actual.
H1: Variance of Pile_Length_Estimated < Variance of Pile_Length_Actual.
##
## F test to compare two variances
##
## data: pile_long$Length by pile_long$Length_Type
## F = 0.95805, num df = 310, denom df = 310, p-value = 0.3531
## alternative hypothesis: true ratio of variances is less than 1
## 95 percent confidence interval:
## 0.0000 1.1552
## sample estimates:
## ratio of variances
## 0.9580495